Part Number Hot Search : 
E2020 TOP9100 PE34502 00GA1 TK39J60W DS024 608X5 B38110
Product Description
Full Text Search
 

To Download LTC5593 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  LTC5593 1 5593f typical application features description dual 2.3ghz to 4.5ghz high dynamic range downconverting mixer the ltc ? 5593 is part of a family of dual-channel high dy - namic range, high gain downconverting mixers covering the 600mhz to 4.5ghz rf frequency range. the LTC5593 is optimized for 2.3ghz to 4.5ghz rf applications. the lo frequency must fall within the 2.1ghz to 4.2ghz range for optimum performance. a typical application is a lte or wimax multichannel or diversity receiver with a 2.3ghz to 2.7ghz rf input. the LTC5593s high conversion gain and high dynamic range enable the use of lossy if filters in high selectivity receiver designs, while minimizing the total solution cost, board space and system-level variation. a low current mode is provided for additional power savings and each of the mixer channels has independent shutdown control. lte diversity receiver applications n conversion gain: 8.5db at 2500mhz n iip3: 27.7dbm at 2500mhz n noise figure: 9.5db at 2500mhz n 15.9db nf under 5dbm blocking n high input p1db n 52db channel isolation at 2500mhz n 3.3v supply, 1.3w power consumption n low power mode for 0.8w consumption n independent channel shutdown control n 50 single-ended rf and lo inputs n lo input matched in all modes n 0dbm lo drive level n C40c to 105c operation n small qfn (5mm 5mm) package and solution size n wireless infrastructure diversity receivers (lte, wimax) n transmit dpd receivers n mimo infrastructure receivers n broadband microwave receivers l , lt, ltc, ltm, linear technology and the linear logo are registered trademarks of linear technology corporation. all other trademarks are the property of their respective owners. if amp adc if amp rf 2500mhz to 2570mhz lna bias bias synth v ccif 3.3v or 5v v cc 3.3v 22pf 22pf 22pf 1f 22pf 1f 22pf 150nh 150nh 1nf 1nf 190mhz saw 190mhz bpf image bpf rfa rfb ena lo ena (0v/3.3v) lo 2345mhz 1.5pf v cca v ccb ifa + ifa ? ifb + ifb ? 5593 ta01a lo amp lo amp enb enb (0v/3.3v) rf 2500mhz to 2570mhz lna 22pf image bpf if amp if amp adc 150nh 150nh 1nf 1nf 190mhz saw 190mhz bpf v ccif v cc high dynamic range dual downconverting mixer family part number rf range lo range ltc5590 600mhz to 1.7ghz 700mhz to 1.5ghz ltc5591 1.3ghz to 2.3ghz 1.4ghz to 2.1ghz ltc5592 1.6ghz to 2.7ghz 1.7ghz to 2.5ghz LTC5593 2.3ghz to 4.5ghz 2.1ghz to 4.2ghz wideband conversion gain, iip3 and nf vs if frequency (LTC5593 only, measured on evaluation board) if output frequency (mhz) 155 6.0 g c (db) iip3 (dbm), ssb nf (db) 6.5 7.5 8.0 8.5 11.0 9.5 175 195 205 5593 ta01b 7.0 10.0 10.5 9.0 8 10 14 16 18 28 iip3 22 12 24 26 20 165 185 215 225 lo = 2345mhz p lo = 0dbm rf = 2535 35mhz test circuit in figure 1 g c nf
LTC5593 2 5593f pin configuration absolute maximum ratings supply voltage (v cc ) ............................................... 4.0v if supply voltage (v ccif ) ......................................... 5.5v enable voltage (ena, enb) .............. C0.3v to v cc + 0.3v bias adjust voltage (ifba, ifbb) ...... C0.3v to v cc + 0.3v power select voltage (i sel ) ............. C0.3v to v cc + 0.3v lo input power (2ghz to 5ghz) ............................. 9dbm lo input dc voltage ............................................... 0.1v rfa, rfb input power (2ghz to 5ghz) ................ 15dbm rfa, rfb input dc voltage .................................... 0.1v operating temperature range (t c ) ........ C40c to 105c storage temperature range .................. C65c to 150c junction temperature (t j ) .................................... 150c (note 1) 24 23 22 21 20 19 7 8 9 top view 25 gnd uh package 24-lead (5mm 5mm) plastic qfn 10 11 12 6 5 4 3 2 1 13 14 15 16 17 18 rfa cta gnd gnd ctb rfb i sel ena lo gnd enb gnd gnd ifgnda ifa + ifa ? ifba v cca gnd ifgndb ifb + ifb ? ifbb v ccb t jmax = 150c, v jc = 7c/w exposed pad (pin 25) is gnd, must be soldered to pcb order information lead free finish tape and reel part marking package description temperature range LTC5593iuh#pbf LTC5593iuh#trpbf 5593 24-lead (5mm 5mm) plastic qfn C40c to 105c consult ltc marketing for parts specified with wider operating temperature ranges. consult ltc marketing for information on non-standard lead based finish parts. for more information on lead free part marking, go to: http://www.linear.com/leadfree/ for more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/
LTC5593 3 5593f dc electrical characteristics v cc = 3.3v, v ccif = 3.3v, ena = enb = high, i sel = low, t c = 25c, unless otherwise noted. test circuit shown in figure 1. (note 2) parameter conditions min typ max units power supply requirements (v cca , v ccb , v ccifa , v ccifb ) v cca , v ccb supply voltage (pins 12, 19) 3.1 3.3 3.5 v v ccifa , v ccifb supply voltage (pins 9, 10, 21, 22) 3.1 3.3 5.3 v mixer supply current (pins 12, 19) both channels enabled 196 242 ma if amplifier supply current (pins 9, 10, 21, 22) both channels enabled 200 251 ma total supply current (pins 9, 10, 12, 19, 21, 22) both channels enabled 396 493 ma total supply current C shutdown ena = enb = low 500 a enable logic input (ena, enb) high = on, low = off ena, enb input high voltage (on) 2.5 v ena, enb input low voltage (off) 0.3 v ena, enb input current C0.3v to v cc + 0.3v C20 30 a turn-on time 0.9 s turn-off time 1.0 s low power mode logic input (i sel ) high = low power, low = normal power mode i sel input high voltage 2.5 v i sel input low voltage 0.3 v i sel input current C0.3v to v cc + 0.3v C20 30 a low power mode current consumption (i sel = high) mixer supply current (pins 12, 19) both channels enabled 127 159 ma if amplifier supply current (pins 9, 10, 21, 22) both channels enabled 120 157 ma total supply current (pins 9, 10, 12, 19, 21, 22) both channels enabled 247 316 ma
LTC5593 4 5593f parameter conditions min typ max units conversion gain rf = 2300mhz rf = 2500mhz rf = 2700mhz rf = 3200mhz rf = 3500mhz rf = 3800mhz 6.8 9.0 8.5 8.0 8.1 7.6 7.0 db db db db db db conversion gain flatness rf = 2500 30mhz, lo = 2310mhz, if = 190 30mhz 0.25 db conversion gain vs temperature t c = C40oc to 105oc, rf = 2500mhz C0.008 db/c input 3rd order intercept rf = 2300mhz rf = 2500mhz rf = 2700mhz rf = 3200mhz rf = 3500mhz rf = 3800mhz 24.0 26.1 27.7 27.6 26.5 26.0 26.1 dbm dbm dbm dbm dbm dbm ssb noise figure rf = 2300mhz rf = 2500mhz rf = 2700mhz rf = 3200mhz rf = 3500mhz rf = 3800mhz 9.4 9.5 9.7 11.2 11.3 12.0 db db db db db db ssb noise figure under blocking f rf =2500mhz, f lo = 2310mhz, f block = 2600mhz, p block = 5dbm p block = 8dbm 15.9 19.4 db db 2rf-2lo output spurious product (f rf = f lo + f if /2) f rf = 2405mhz at C10dbm, f lo = 2310mhz, f if = 190mhz C64 dbc 3rf-3lo output spurious product (f rf = f lo + f if /3) f rf = 2373.3mhz at C10dbm, f lo = 2310mhz, f if = 190mhz C70 dbc input 1db compression f rf = 2500mhz, v ccif = 3.3v f rf = 2500mhz, v ccif = 5v 10.4 13.7 dbm dbm parameter conditions min typ max units lo input frequency range 2100 to 3800 mhz rf input frequency range low side lo high side lo 2300 to 4000 2300 to 4000 mhz mhz if output frequency range requires external matching 5 to 600 mhz rf input return loss z o = 50, 2200mhz to 3800mhz >12 db lo input return loss z o = 50, 2400mhz to 3600mhz >12 db if output impedance differential at 190mhz 274||2.4pf r||c lo input power f lo = 2100mhz to 3800mhz C4 0 6 dbm lo to rf leakage f lo = 2100mhz to 3800mhz 44 db rf to if isolation f rf = 2300mhz to 4000mhz >38 db channel-to-channel isolation f rf = 2500mhz f rf = 3500mhz 52 44 db db ac electrical characteristics v cc = 3.3v, v ccif = 3.3v, ena = enb = high, i sel = low, t c = 25c, p lo = 0dbm, p rf = C3dbm (?f = 2mhz for two tone iip3 tests), unless otherwise noted. test circuit shown in figure 1. (notes 2, 3, 4) low side lo downmixer application: i sel = low, if = 190mhz, f lo = f rf C f if
LTC5593 5 5593f parameter conditions min typ max units conversion gain rf = 2500mhz rf = 3500mhz 7.8 6.3 db db input 3rd order intercept rf = 2500mhz rf = 3500mhz 21.6 21.0 dbm dbm ssb noise figure rf = 2500mhz rf = 3500mhz 9.2 11.5 db db input 1db compression rf = 2500mhz, v ccif = 3.3v rf = 2500mhz, v ccif = 5v 10.0 10.7 dbm dbm ac electrical characteristics v cc = 3.3v, v ccif = 3.3v, ena = enb = high, t c = 25c, p lo = 0dbm, p rf = C3dbm (?f = 2mhz for 2-tone iip3 tests), unless otherwise noted. test circuit shown in figure 1. (notes 2, 3) low power mode, low side lo downmixer application: i sel = high, if = 190mhz, f lo = f rf C f if parameter conditions min typ max units conversion gain rf = 2300mhz rf = 2500mhz rf = 2700mhz rf = 3200mhz rf = 3500mhz rf = 3800mhz 8.7 8.4 8.0 7.7 7.2 6.8 db db db db db db conversion gain flatness rf = 2500 30mhz, lo = 2690mhz, if = 190 30mhz 0.1 db conversion gain vs temperature t c = C40oc to 105oc, rf = 2500mhz C0.006 db/c input 3rd order intercept rf = 2300mhz rf = 2500mhz rf = 2700mhz rf = 3200mhz rf = 3500mhz rf = 3800mhz 25.1 25.5 25.9 24.5 24.2 23.8 dbm dbm dbm dbm dbm dbm ssb noise figure rf = 2300mhz rf = 2500mhz rf = 2700mhz rf = 3200mhz rf = 3500mhz rf = 3800mhz 10.0 10.5 10.6 11.1 12.1 12.1 db db db db db db ssb noise figure under blocking f rf = 2500mhz, f lo = 2690mhz, f block = 2400mhz, p block = 5dbm p block = 8dbm 17.8 21.8 db db 2lo-2rf output spurious product (f rf = f lo C f if /2) f rf = 2595mhz at C10dbm, f lo = 2690mhz, f if = 190mhz C66 dbc 3lo-3rf output spurious product (f rf = f lo C f if /3) f rf = 2626.67mhz at C10dbm, f lo = 2690mhz, f if = 190mhz C75 dbc input 1db compression rf = 2500mhz, v ccif = 3.3v rf = 2500mhz, v ccif = 5v 10.7 14.1 dbm dbm high side lo downmixer application: i sel = low, if = 190mhz, f lo = f rf + f if
LTC5593 6 5593f parameter conditions min typ max units conversion gain rf = 2500mhz rf = 3500mhz 7.4 5.9 db db input 3rd order intercept rf = 2500mhz rf = 3500mhz 22.1 20.2 dbm dbm ssb noise figure rf = 2500mhz rf = 3500mhz 10.6 12.4 db db input 1db compression rf = 2500mhz, v ccif = 3.3v rf = 2500mhz, v ccif = 5v 10.9 11.7 dbm dbm note 1: stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. exposure to any absolute maximum rating condition for extended periods may affect device reliability and lifetime. note 2: the LTC5593 is guaranteed functional over the case operating temperature range of C40c to 105c. ( jc = 7c/w) note 3: ssb noise figure measured with a small-signal noise source, bandpass filter and 6db matching pad on rf input, bandpass filter and 6db matching pad on the lo input, and no other rf signals applied. note 4: channel a to channel b isolation is measured as the relative if output power of channel b to channel a, with the rf input signal applied to channel a. the rf input of channel b is 50 terminated and both mixers are enabled. ac electrical characteristics v cc = 3.3v, v ccif = 3.3v, ena = enb = high, t c = 25c, p lo = 0dbm, p rf = C3dbm (?f = 2mhz for two tone iip3 tests), unless otherwise noted. test circuit shown in figure 1. (notes 2, 3) low power mode, high side lo downmixer application: i sel = high, if = 190mhz, f lo = f rf + f if
LTC5593 7 5593f 2.3ghz to 2.7ghz, low side lo. typical ac performance characteristics v cc = 3.3v, v ccif = 3.3v, ena = enb = high, i sel = low, t c = 25c, p lo = 0dbm, p rf = C3dbm (C3dbm/tone for 2-tone iip3 tests, ?f = 2mhz), if = 190mhz, unless otherwise noted. test circuit shown in figure 1. ssb nf vs rf frequency conversion gain and iip3 vs rf frequency channel isolation vs rf frequency 2300mhz conversion gain, iip3 and nf vs lo power 2700mhz conversion gain, iip3 and nf vs lo power 2500mhz conversion gain, iip3 and nf vs lo power conversion gain, iip3 and nf vs supply voltage (single supply) conversion gain, iip3 and rf input p1db vs temperature conversion gain, iip3 and nf vs if supply voltage (dual supply) rf frequency (ghz) 2.2 19 iip3 (dbm) g c (db) 21 23 25 27 29 6 8 10 12 14 16 iip3 g c 2.3 2.4 2.5 2.6 5593 g01 2.7 2.8 105c 85c 25c ?40c rf frequency (ghz) 2.2 6 ssb nf (db) 8 10 12 14 16 2.3 2.4 2.5 2.6 5593 g02 2.7 2.8 105c 85c 25c ?40c rf frequency (ghz) 2.2 40 isolation (db) 44 48 52 56 60 2.3 2.4 2.5 2.6 5593 g03 2.7 2.8 105c 85c 25c ?40c lo input power (dbm) ?6 7 g c (db), iip3 (dbm) ssb nf (db) 11 15 19 23 ?2 2 ?4 0 4 5593 g04 6 27 9 13 17 21 25 29 0 4 8 12 16 20 2 6 10 14 18 22 iip3 nf 85c 25c ?40c g c lo input power (dbm) ?6 7 g c (db), iip3 (dbm) ssb nf (db) 11 15 19 23 ?2 2 ?4 0 4 5593 g05 6 27 9 13 17 21 25 29 0 4 8 12 16 20 2 6 10 14 18 22 85c 25c ?40c g c iip3 nf lo input power (dbm) ?6 7 g c (db), iip3 (dbm) ssb nf (db) 11 15 19 23 ?2 2 ?4 0 4 5593 g06 6 27 9 13 17 21 25 29 0 4 8 12 16 20 2 6 10 14 18 22 85c 25c ?40c nf g c iip3 nf v cc , v ccif supply voltage (v) 3.0 7 g c (db), iip3 (dbm) ssb nf (db) 11 15 19 23 3.2 3.4 3.1 3.3 3.5 5593 g07 3.6 27 9 13 17 21 25 29 0 4 8 12 16 20 2 6 10 14 18 22 85c 25c ?40c rf = 2500mhz v cc = v ccif iip3 g c nf v ccif supply voltage (v) 3.0 7 g c (db), iip3 (dbm) ssb nf (db) 11 15 19 23 3.6 4.2 3.3 3.9 4.5 4.8 5.1 5593 g08 5.4 27 9 13 17 21 25 29 0 4 8 12 16 20 2 6 10 14 18 22 85c 25c ?40c rf = 2500mhz v cc = 3.3v iip3 g c nf case temperature (c) ?40 ?25 g c (db), iip3 (dbm), p1db (dbm) 13 25 27 29 5 50 65 80 5593 g09 9 21 17 11 23 7 19 15 ?10 20 35 95 110 v ccif = 5v v ccif = 3.3v rf = 2500mhz iip3 p1db g c
LTC5593 8 5593f rf frequency (ghz) 2.2 ?75 relative spur level (dbc) ?70 ?65 ?60 ?55 2.3 2.4 2.5 2.6 5593 g12 2.7 2.8 p rf = ?10dbm 2rf-2lo 3rf-3lo rf input power (dbm) ?15 ?80 output power (dbm) ?70 ?50 ?40 ?30 20 ?10 ?9 ?3 0 12 5593 g11 ?60 0 10 ?20 ?12 ?6 3 6 9 if out (rf = 2500mhz) 2rf-2lo (rf = 2405mhz) 3rf-3lo (rf = 2373.33mhz) lo = 2310mhz 2.3ghz to 2.7ghz, low side lo (continued). typical ac performance characteristics v cc = 3.3v, v ccif = 3.3v, ena = enb = high, i sel = low, t c = 25c, p lo = 0dbm, p rf = C3dbm (C3dbm/tone for 2-tone iip3 tests, ?f = 2mhz), if = 190mhz, unless otherwise noted. test circuit shown in figure 1. 2-tone if output power, im3 and im5 vs rf input power 2 2 and 3 3 spurs vs rf frequency ssb noise figure vs rf blocker level rf isolation vs rf frequency lo leakage vs lo frequency single-tone if output power, 2 2 and 3 3 spurs vs rf input power rf input power (dbm/tone) ?12 ?80 output power/tone (dbm) ?60 im3 im5 ?40 ?20 ?9 ?6 ?3 0 5593 g10 3 0 20 if out ?70 ?50 ?30 ?10 10 6 rf1 = 2499mhz rf2 = 2501mhz lo = 2310mhz lo frequency (ghz) 2.0 ?60 lo leakage (dbm) ?50 ?40 ?30 ?20 2.1 2.2 2.3 2.4 5593 g14 2.5 2.6 2.7 2.8 lo-rf lo-if rf frequency (ghz) 2.2 35 isolation (db) 40 45 50 55 65 2.3 2.4 2.5 2.6 rf-lo rf-if 5593 g15 2.7 2.8 60 rf blocker power (dbm) ?25 16 18 22 ?10 0 5593 g13 14 12 ?20 ?15 ?5 5 10 10 8 20 ssb nf (db) p lo = ?3dbm p lo = 0dbm p lo = 6dbm rf = 2500mhz lo = 2310mhz blocker = 2600mhz conversion gain distribution ssb noise figure distribution iip3 distribution conversion gain (db) 7.8 20 25 35 rf = 2500mhz 8.4 8.8 5593 g16 15 10 8.0 8.2 8.6 9.0 9.2 9.4 5 0 30 distribution (%) 85c 25c ?40c iip3 (dbm) 24.9 25.3 26.1 26.9 distribution (%) 12 16 20 28.1 5593 g17 8 4 10 14 18 6 2 0 25.7 26.5 27.3 27.7 rf = 2500mhz 85c 25c ?40c ssb noise figure (db) 7.8 20 25 35 rf = 2500mhz 9.0 9.8 5593 g18 15 10 8.2 8.6 9.4 10.2 10.6 11.0 11.4 5 0 30 distribution (%) 85c 25c ?40c
LTC5593 9 5593f typical ac performance characteristics typical ac performance characteristics 2.3ghz to 2.7ghz, low side lo, i sel = high (low power mode). v cc = 3.3v, v ccif = 3.3v, ena = enb = high, t c = 25c, p lo = 0dbm, p rf = C3dbm (C3dbm/tone for 2-tone iip3 tests, ?f = 2mhz), if = 190mhz, unless otherwise noted. test circuit shown in figure 1. ssb nf vs rf frequency conversion gain and iip3 vs rf frequency channel isolation vs rf frequency 2300mhz conversion gain, iip3 and nf vs lo power 2500mhz conversion gain, iip3 and nf vs lo power 2700mhz conversion gain, iip3 and nf vs lo power rf isolation and lo leakage vs frequency conversion gain, iip3 and nf vs supply voltage (single supply) conversion gain, iip3 and rf input p1db vs temperature rf frequency (ghz) 2.2 12 iip3 (dbm) g c (db) 14 16 18 20 24 iip3 g c 2.3 2.4 2.5 2.6 5593 g19 2.7 2.8 22 5 7 9 11 13 17 15 105c 85c 25c ?40c rf frequency (ghz) 2.2 6 ssb nf (db) 8 10 12 14 16 2.3 2.4 2.5 2.6 5593 g20 2.7 2.8 105c 85c 25c ?40c rf frequency (ghz) 2.2 40 isolation (db) 44 48 52 56 60 2.3 2.4 2.5 2.6 5593 g21 2.7 2.8 105c 85c 25c ?40c lo input power (dbm) ?6 6 g c (db), iip3 (dbm) ssb nf (db) 8 12 14 16 2 24 5593 g22 10 ?2 ?4 4 0 6 18 20 22 2 4 8 10 12 20 iip3 nf 6 14 16 18 85c 25c ?40c g c lo input power (dbm) ?6 6 g c (db), iip3 (dbm) ssb nf (db) 8 12 14 16 2 24 5593 g23 10 ?2 ?4 4 0 6 18 20 22 2 4 8 10 12 20 iip3 nf 6 14 16 18 85c 25c ?40c g c lo input power (dbm) ?6 6 g c (db), iip3 (dbm) ssb nf (db) 8 12 14 16 2 24 5593 g24 10 ?2 ?4 4 0 6 18 20 22 2 4 8 10 12 20 iip3 6 14 16 18 85c 25c ?40c g c nf v cc , v ccif supply voltage (v) 3.0 6 g c (db), iip3 (dbm) ssb nf (db) 8 12 14 16 3.4 24 5593 g25 10 3.2 3.1 3.5 3.3 3.6 18 20 22 2 4 8 10 12 20 iip3 6 14 16 18 85c 25c ?40c g c nf rf = 2500mhz v cc = v ccif case temperature (c) ? 40 g c (db), iip3 (dbm), p1db (dbm) 18 22 26 80 5593 g26 14 10 16 20 24 12 8 6 ? 10? 25 205 50 65 95 35 110 v ccif = 5v v ccif = 3.3v rf = 2500mhz iip3 p1db g c rf, lo frequency (ghz) 2.1 lo leakage (dbm) rf isolation (db) ?20 ?10 0 70 2.4 2.6 5593 g27 ?30 ?40 2.2 2.3 2.5 2.7 2.8 ?50 ?60 50 60 40 30 20 10 rf-lo lo-rf rf-if lo-if
LTC5593 10 5593f typical ac performance characteristics 2.3ghz to 2.7ghz, high side lo. v cc = 3.3v, v ccif = 3.3v, ena = enb = high, i sel = low, t c = 25c, p lo = 0dbm, p rf = C3dbm (C3dbm/tone for 2-tone iip3 tests, ?f = 2mhz), if = 190mhz, unless otherwise noted. test circuit shown in figure 1. conversion gain and iip3 vs rf frequency ssb nf vs rf frequency channel isolation vs rf frequency rf frequency (ghz) 2.2 16 iip3 (dbm) g c (db) 18 20 22 24 28 iip3 2.3 2.4 2.5 2.6 5593 g28 2.7 2.8 26 5 7 9 11 13 17 15 105c 85c 25c ?40c g c rf frequency (ghz) 2.2 6 ssb nf (db) 8 10 12 14 16 2.3 2.4 2.5 2.6 5593 g29 2.7 2.8 105c 85c 25c ?40c rf frequency (ghz) 2.2 40 isolation (db) 47 54 61 68 2.3 2.4 2.5 2.6 5593 g30 2.7 2.8 105c 85c 25c ?40c 2300mhz conversion gain, iip3 and nf vs lo power 2500mhz conversion gain, iip3 and nf vs lo power lo input power (dbm) ?6 6 g c (db), iip3 (dbm) ssb nf (db) 10 14 18 22 ?2 2 ?4 0 4 5593 g31 6 26 8 12 16 20 24 28 0 4 8 12 16 20 2 6 10 14 18 22 iip3 nf 85c 25c ?40c g c lo input power (dbm) ?6 6 g c (db), iip3 (dbm) ssb nf (db) 10 14 18 22 ?2 2 ?4 0 4 5593 g32 6 26 8 12 16 20 24 28 0 4 8 12 16 20 2 6 10 14 18 22 iip3 85c 25c ?40c g c nf 2700mhz conversion gain, iip3 and nf vs lo power lo input power (dbm) ?6 6 g c (db), iip3 (dbm) ssb nf (db) 10 14 18 22 ?2 2 ?4 0 4 5593 g33 6 26 8 12 16 20 24 28 0 4 8 12 16 20 2 6 10 14 18 22 85c 25c ?40c g c nf iip3 conversion gain, iip3 and rf input p1db vs temperature conversion gain, iip3 and nf vs supply voltage (single supply) rf isolation and lo leakage vs frequency v cc , v ccif supply voltage (v) 3.0 6 g c (db), iip3 (dbm) ssb nf (db) 10 14 18 3.1 3.2 3.3 3.4 5593 g34 3.5 22 26 8 12 16 20 24 iip3 0 4 8 12 16 20 2 6 10 14 18 3.6 85c 25c ?40c nf g c rf = 2500mhz v cc = v ccif case temperature (c) ? 40 g c (db), iip3 (dbm), p1db (dbm) 18 22 26 80 5593 g35 14 10 16 20 24 12 8 6 ? 10? 25 205 50 65 95 35 110 v ccif = 5v v ccif = 3.3v rf = 2500mhz iip3 p1db g c rf, lo frequency (ghz) 2.1 lo leakage (dbm) rf isolation (db) ?20 ?10 0 70 2.4 2.6 5593 g36 ?30 ?40 2.2 2.3 2.5 2.7 2.8 ?50 ?60 50 60 40 30 20 10 rf-lo lo-rf rf-if lo-if
LTC5593 11 5593f typical ac performance characteristics 2.3ghz to 2.7ghz, high side lo, i sel = high (low power mode). v cc = 3.3v, v ccif = 3.3v, ena = enb = high, t c = 25c, p lo = 0dbm, p rf = C3dbm (C3dbm/tone for 2-tone iip3 tests, ?f = 2mhz), if = 190mhz, unless otherwise noted. test circuit shown in figure 1. 2700mhz conversion gain, iip3 and nf vs lo power conversion gain, iip3 and nf vs supply voltage (single supply) ssb nf vs rf frequency conversion gain and iip3 vs rf frequency channel isolation vs rf frequency 2300mhz conversion gain, iip3 and nf vs lo power 2500mhz conversion gain, iip3 and nf vs lo power rf frequency (ghz) 2.2 13 iip3 (dbm) g c (db) 15 17 19 21 23 5 7 9 11 13 iip3 g c 15 2.3 2.4 2.5 2.6 5593 g37 2.7 2.8 105c 85c 25c ?40c rf frequency (ghz) 2.2 6 ssb nf (db) 8 10 12 14 16 2.3 2.4 2.5 2.6 5593 g38 2.7 2.8 105c 85c 25c ?40c rf frequency (ghz) 2.2 40 isolation (db) 47 54 68 61 2.3 2.4 2.5 2.6 5593 g39 2.7 2.8 105c 85c 25c ?40c lo input power (dbm) ?6 6 g c (db), iip3 (dbm) ssb nf (db) 8 12 14 16 2 24 5593 g40 10 ?2 ?4 4 0 6 18 20 22 2 4 8 10 12 20 nf 6 14 16 18 85c 25c ?40c g c iip3 lo input power (dbm) ?6 6 g c (db), iip3 (dbm) ssb nf (db) 8 12 14 16 2 24 5593 g41 10 ?2 ?4 4 0 6 18 20 22 2 4 8 10 12 20 nf 6 14 16 18 85c 25c ?40c g c iip3 lo input power (dbm) ?6 6 g c (db), iip3 (dbm) ssb nf (db) 8 12 14 16 2 24 5593 g42 10 ?2 ?4 4 0 6 18 20 22 2 4 8 10 12 20 nf 6 14 16 18 85c 25c ?40c g c iip3 v cc , v ccif supply voltage (v) 3.0 6 g c (db), iip3 (dbm) ssb nf (db) 8 12 14 16 3.4 24 5593 g43 10 3.2 3.1 3.5 3.3 3.6 18 20 22 2 4 8 10 12 20 nf 6 14 16 18 85c 25c ?40c g c iip3 rf = 2500mhz v cc = v ccif conversion gain, iip3 and rf input p1db vs temperature rf isolation and lo leakage vs frequency case temperature (c) ? 40 g c (db), iip3 (dbm), p1db (dbm) 18 22 26 80 5593 g44 14 10 16 20 24 12 8 6 ? 10? 25 205 50 65 95 35 110 v ccif = 5v v ccif = 3.3v rf = 2500mhz iip3 p1db g c rf, lo frequency (ghz) 2.1 lo leakage (dbm) rf isolation (db) ?20 ?10 0 70 2.4 2.6 5593 g45 ?30 ?40 2.2 2.3 2.5 2.7 2.8 ?50 ?60 50 60 40 30 20 10 rf-lo lo-rf rf-if lo-if
LTC5593 12 5593f typical ac performance characteristics 2.7ghz to 4ghz, low side lo. v cc = 3.3v, v ccif = 3.3v, ena = enb = high, i sel = low, t c = 25c, p lo = 0dbm, p rf = C3dbm (C3dbm/tone for 2-tone iip3 tests, ?f = 2mhz), if = 190mhz, unless otherwise noted. test circuit shown in figure 1. ssb nf vs rf frequency conversion gain and iip3 vs rf frequency channel isolation vs rf frequency 3200mhz conversion gain, iip3 and nf vs lo power 3500mhz conversion gain, iip3 and nf vs lo power rf frequency (ghz) 2.6 2.8 18 iip3 (dbm) g c (db) 22 28 iip3 g c 3.0 3.4 3.6 5593 g46 20 26 24 6 10 16 8 14 12 3.2 3.8 4.0 105c 85c 25c ?40c rf frequency (ghz) 2.6 2.8 6 ssb nf (db) 10 16 3.0 3.4 3.6 5593 g47 8 14 12 3.2 3.8 4.0 105c 85c 25c ?40c rf frequency (ghz) 2.6 2.8 40 isolation (db) 44 50 3.0 3.4 3.6 5593 g48 42 48 46 3.2 3.8 4.0 105c 85c 25c ?40c lo input power (dbm) ?6 6 g c (db), iip3 (dbm) ssb nf (db) 10 14 18 22 ?2 2 ?4 0 4 5593 g49 6 26 8 12 16 20 24 28 0 4 8 12 16 20 2 6 10 14 18 22 iip3 nf 85c 25c ?40c g c lo input power (dbm) ?6 6 g c (db), iip3 (dbm) ssb nf (db) 10 14 18 22 ?2 2 ?4 0 4 5593 g50 6 26 8 12 16 20 24 28 0 4 8 12 16 20 2 6 10 14 18 22 iip3 nf 85c 25c ?40c g c 3800mhz conversion gain, iip3 and nf vs lo power lo input power (dbm) ?6 6 g c (db), iip3 (dbm) ssb nf (db) 10 14 18 22 ?2 2 ?4 0 4 5593 g51 6 26 8 12 16 20 24 28 0 4 8 12 16 20 2 6 10 14 18 22 iip3 85c 25c ?40c g c nf conversion gain, iip3 and nf vs supply voltage (single supply) v cc , v ccif supply voltage (v) 3.0 6 g c (db), iip3 (dbm) ssb nf (db) 10 14 18 22 3.2 3.4 3.1 3.3 3.5 5593 g52 3.6 26 8 12 16 20 24 28 0 4 8 12 16 20 2 6 10 14 18 22 iip3 85c 25c ?40c g c nf rf = 3500mhz v cc = v ccif conversion gain, iip3 and rf input p1db vs temperature rf isolation and lo leakage vs frequency case temperature (c) ?40 ?25 g c (db), iip3 (dbm), p1db (dbm) 12 24 26 28 5 50 65 80 5593 g53 8 20 16 10 22 6 18 14 ?10 20 35 95 110 v ccif = 5v v ccif = 3.3v rf = 2500mhz iip3 p1db g c rf, lo frequency (ghz) 2.6 lo leakage (dbm) rf isolation (db) ?20 ?10 0 70 3.2 3.6 5593 g54 ?30 ?40 2.8 3.0 3.4 3.8 4.0 ?50 ?60 50 60 40 30 20 10 rf-lo lo-rf rf-if lo-if
LTC5593 13 5593f typical ac performance characteristics 2.7ghz to 4ghz, low side lo, i sel = high (low power mode). v cc = 3.3v, v ccif = 3.3v, ena = enb = high, t c = 25c, p lo = 0dbm, p rf = C3dbm (C3dbm/tone for 2-tone iip3 tests, ?f = 2mhz), if = 190mhz, unless otherwise noted. test circuit shown in figure 1. ssb nf vs rf frequency conversion gain and iip3 vs rf frequency channel isolation vs rf frequency rf frequency (ghz) 2.6 2.8 14 iip3 (dbm) g c (db) 18 24 iip3 g c 3.0 3.4 3.6 5593 g55 16 22 20 4 8 14 6 12 10 3.2 3.8 4.0 105c 85c 25c ?40c rf frequency (ghz) 2.6 2.8 6 ssb nf (db) 10 16 3.0 3.4 3.6 5593 g56 8 14 12 3.2 3.8 4.0 105c 85c 25c ?40c rf frequency (ghz) 2.6 2.8 40 isolation (db) 44 50 3.0 3.4 3.6 5593 g57 42 48 46 3.2 3.8 4.0 105c 85c 25c ?40c 3200mhz conversion gain, iip3 and nf vs lo power 3800mhz conversion gain, iip3 and nf vs lo power conversion gain, iip3 and rf input p1db vs temperature 3500mhz conversion gain, iip3 and nf vs lo power conversion gain, iip3 and nf vs supply voltage (single supply) rf isolation and lo leakage vs frequency lo input power (dbm) ?6 6 g c (db), iip3 (dbm) ssb nf (db) 8 12 14 16 2 24 5593 g58 10 ?2 ?4 4 0 6 18 20 22 2 4 8 10 12 20 nf 6 14 16 18 85c 25c ?40c iip3 g c lo input power (dbm) ?6 5 g c (db), iip3 (dbm) ssb nf (db) 7 11 13 15 2 23 5593 g59 9 ?2 ?4 4 0 6 17 19 21 2 4 8 10 12 20 nf 6 14 16 18 85c 25c ?40c iip3 g c lo input power (dbm) ?6 6 4 g c (db), iip3 (dbm) ssb nf (db) 8 12 14 16 2 5593 g60 10 ?2 ?4 4 0 6 18 20 22 2 4 8 10 12 20 6 14 16 18 85c 25c ?40c iip3 g c nf v cc , v ccif supply voltage (v) 3.0 5 g c (db), iip3 (dbm) ssb nf (db) 7 11 13 15 3.4 23 5593 g61 9 3.2 3.1 3.5 3.3 3.6 17 19 21 2 4 8 10 12 20 6 14 16 18 85c 25c ?40c iip3 g c nf rf = 3500mhz v cc = v ccif case temperature (c) ? 40 g c (db), iip3 (dbm), p1db (dbm) 17 21 25 80 5593 g62 13 9 15 19 23 11 7 5 ? 10? 25 205 50 65 95 35 110 v ccif = 5v v ccif = 3.3v rf = 3500mhz iip3 p1db g c rf, lo frequency (ghz) 2.6 lo leakage (dbm) rf isolation (db) ?20 ?10 0 70 3.2 3.6 5593 g63 ?30 ?40 2.8 3.0 3.4 3.8 4.0 ?50 ?60 50 60 40 30 20 10 rf-lo lo-rf rf-if lo-if
LTC5593 14 5593f typical ac performance characteristics 2.7ghz to 4ghz, high side lo. v cc = 3.3v, v ccif = 3.3v, ena = enb = high, i sel = low, t c = 25c, p lo = 0dbm, p rf = C3dbm (C3dbm/tone for 2-tone iip3 tests, ?f = 2mhz), if = 190mhz, unless otherwise noted. test circuit shown in figure 1. 3800mhz conversion gain, iip3 and nf vs lo power conversion gain, iip3 and nf vs supply voltage (single supply) ssb nf vs rf frequency conversion gain and iip3 vs rf frequency channel isolation vs rf frequency 3200mhz conversion gain, iip3 and nf vs lo power 3500mhz conversion gain, iip3 and nf vs lo power rf frequency (ghz) 2.6 2.8 18 iip3 (dbm) g c (db) 22 28 iip3 g c 3.0 3.4 3.6 5593 g64 20 26 24 6 10 16 8 14 12 3.2 3.8 4.0 105c 85c 25c ?40c rf frequency (ghz) 2.6 2.8 6 ssb nf (db) 10 16 3.0 3.4 3.6 5593 g65 8 14 12 3.2 3.8 4.0 105c 85c 25c ?40c rf frequency (ghz) 2.6 2.8 40 isolation (db) 46 55 3.0 3.4 3.6 5593 g66 43 52 49 3.2 3.8 4.0 105c 85c 25c ?40c lo input power (dbm) ?6 6 g c (db), iip3 (dbm) ssb nf (db) 10 14 18 ?4 ?2 0 2 5593 g67 4 22 26 8 12 16 20 24 iip3 0 4 8 12 16 20 2 6 10 14 18 6 85c 25c ?40c nf g c lo input power (dbm) ?6 6 g c (db), iip3 (dbm) ssb nf (db) 10 14 18 ?4 ?2 0 2 5593 g68 4 22 26 8 12 16 20 24 iip3 0 4 8 12 16 20 2 6 10 14 18 6 85c 25c ?40c g c nf lo input power (dbm) ?6 6 g c (db), iip3 (dbm) ssb nf (db) 10 14 18 ?4 ?2 0 2 5593 g69 4 22 26 8 12 16 20 24 iip3 0 4 8 12 16 20 2 6 10 14 18 6 85c 25c ?40c nf g c v cc , v ccif supply voltage (v) 3.0 5 g c (db), iip3 (dbm) ssb nf (db) 9 13 17 3.1 3.2 3.3 3.4 5593 g70 3.5 21 25 7 11 15 19 23 iip3 0 4 8 12 16 20 2 6 10 14 18 3.6 85c 25c ?40c nf g c rf = 3500mhz v cc = v ccif rf, lo frequency (ghz) 2.6 lo leakage (dbm) rf isolation (db) ?20 ?10 0 70 3.2 3.6 5593 g72 ?30 ?40 2.8 3.0 3.4 3.8 4.0 ?50 ?60 50 60 40 30 20 10 rf-lo lo-rf rf-if lo-if conversion gain, iip3 and rf input p1db vs temperature rf isolation and lo leakage vs frequency case temperature (c) ? 40 g c (db), iip3 (dbm), p1db (dbm) 17 21 27 25 80 5593 g71 13 9 15 19 23 11 7 5 ? 10? 25 205 50 65 95 35 110 v ccif = 5v v ccif = 3.3v rf = 3500mhz iip3 p1db g c
LTC5593 15 5593f typical ac performance characteristics 2.7ghz to 4ghz, high side lo, i sel = high (low power mode). v cc = 3.3v, v ccif = 3.3v, ena = enb = high, t c = 25c, p lo = 0dbm, p rf = C3dbm (C3dbm/tone for 2-tone iip3 tests, ?f = 2mhz), if = 190mhz, unless otherwise noted. test circuit shown in figure 1. ssb nf vs rf frequency conversion gain and iip3 vs rf frequency channel isolation vs rf frequency 3200mhz conversion gain, iip3 and nf vs lo power 3500mhz conversion gain, iip3 and nf vs lo power rf frequency (ghz) 2.6 2.8 14 iip3 (dbm) g c (db) 18 24 iip3 g c 3.0 3.4 3.6 5593 g73 16 22 20 4 8 14 6 12 10 3.2 3.8 4.0 105c 85c 25c ?40c rf frequency (ghz) 2.6 2.8 6 ssb nf (db) 10 16 3.0 3.4 3.6 5593 g74 8 14 12 3.2 3.8 4.0 105c 85c 25c ?40c rf frequency (ghz) 2.6 2.8 40 isolation (db) 46 55 3.0 3.4 3.6 5593 g75 43 52 49 3.2 3.8 4.0 105c 85c 25c ?40c lo input power (dbm) ?6 5 g c (db), iip3 (dbm) ssb nf (db) 7 11 13 15 2 23 5593 g76 9 ?2 ?4 4 0 6 17 19 21 2 4 8 10 12 20 nf 6 14 16 18 85c 25c ?40c iip3 g c lo input power (dbm) ?6 4 g c (db), iip3 (dbm) ssb nf (db) 6 10 12 14 2 22 5593 g77 8 ?2 ?4 4 0 6 16 18 20 2 4 8 10 12 20 nf 6 14 16 18 85c 25c ?40c iip3 g c 3800mhz conversion gain, iip3 and nf vs lo power conversion gain, iip3 and rf input p1db vs temperature conversion gain, iip3 and nf vs supply voltage (single supply) rf isolation and lo leakage vs frequency lo input power (dbm) ?6 4 g c (db), iip3 (dbm) ssb nf (db) 6 10 12 14 2 22 5593 g78 8 ?2 ?4 4 0 6 16 18 20 2 4 8 10 12 20 nf 6 14 16 18 85c 25c ?40c iip3 g c v cc , v ccif supply voltage (v) 3.0 4 g c (db), iip3 (dbm) ssb nf (db) 6 10 12 14 3.4 22 5593 g79 8 3.2 3.1 3.5 3.3 3.6 16 18 20 2 4 8 10 12 20 6 14 16 18 85c 25c ?40c iip3 nf rf = 3500mhz v cc = v ccif g c case temperature (c) ? 40 g c (db), iip3 (dbm), p1db (dbm) 16 20 24 80 5593 g80 12 8 14 18 22 10 6 4 ? 10? 25 205 50 65 95 35 110 v ccif = 5v v ccif = 3.3v rf = 3500mhz iip3 p1db g c rf, lo frequency (ghz) 2.6 lo leakage (dbm) rf isolation (db) ?20 ?10 0 70 3.2 3.6 5593 g81 ?30 ?40 2.8 3.0 3.4 3.8 4.0 ?50 ?60 50 60 40 30 20 10 rf-lo lo-rf rf-if lo-if
LTC5593 16 5593f typical dc performance characteristics i sel = low, ena = enb = high, test circuit shown in figure 1 i sel = high (low power mode), ena = enb = high, test circuit shown in figure 1 v cc supply current vs supply voltage (mixer and lo amplifier) v cc supply current vs supply voltage (mixer and lo amplifier) v ccif supply current vs supply voltage (if amplifier) v ccif supply current vs supply voltage (if amplifier) total supply current vs temperature (v cc + v ccif ) total supply current vs temperature (v cc + v ccif ) v cc supply voltage (v) 3.0 184 supply current (ma) 188 192 196 3.1 3.2 3.3 3.4 5593 g82 3.5 200 204 186 190 194 198 202 3.6 105c 85c 25c ?40c v ccif supply voltage (v) 3.0 140 supply current (ma) 160 180 200 220 3.6 4.2 4.8 5.4 5593 g83 240 260 3.3 3.9 4.5 5.1 105c 85c 25c ?40c temperature (c) 340 supply current (ma) 380 420 460 360 400 440 ?10 20 50 80 5593 g84 110 ?25?40 5 35 65 95 v cc = 3.3v, v ccif = 5v (dual supply) v cc = v ccif = 3.3v (single supply) v cc supply voltage (v) 3.0 120 supply current (ma) 124 128 3.1 3.2 3.3 3.4 5593 g85 3.5 134 122 126 130 132 3.6 105c 85c 25c ?40c v ccif supply voltage (v) 3.0 80 supply current (ma) 100 120 3.6 4.2 4.8 5.4 5593 g86 140 160 3.3 3.9 4.5 5.1 105c 85c 25c ?40c temperature (c) 200 supply current (ma) 240 300 220 260 280 ?10 20 50 80 5593 g87 110 ?25?40 5 35 65 95 v cc = 3.3v, v ccif = 5v (dual supply) v cc = v ccif = 3.3v (single supply)
LTC5593 17 5593f pin functions rfa, rfb (pins 1, 6): single-ended rf inputs for chan - nels a and b. these pins are internally connected to the primary sides of the rf input transformers, which have low dc resistance to ground. series dc-blocking capaci - tors should be used to avoid damage to the integrated transformer when dc voltage is present at the rf inputs. the rf inputs are impedance matched when the lo input is driven with a 06dbm source between 2.1ghz and 4.2ghz and the channels are enabled. cta, ctb (pins 2, 5): rf transformer secondary center- tap on channels a and b. these pins may require bypass capacitors to ground to optimize iip3 performance. each pin has an internally generated bias voltage of 1.2v and must be dc-isolated from ground and v cc . gnd (pins 3, 4, 7, 13, 15, 24, exposed pad pin 25): ground. these pins must be soldered to the rf ground plane on the circuit board. the exposed pad metal of the package provides both electrical contact to ground and good thermal contact to the printed circuit board. ifgndb, ifgnda (pins 8, 23): dc ground returns for the if amplifiers. these pins must be connected to ground to complete the dc current paths for the if amplifiers. chip inductors may be used to tune lo-if and rf-if leakage. typical dc current is 100ma for each pin. ifb + , ifb C , ifa C , ifa + (pins 9, 10, 21, 22): open-collec- tor differential outputs for the if amplifiers of channels b and a. these pins must be connected to a dc supply through impedance matching inductors, or transformer center-taps. typical dc current consumption is 50ma into each pin. ifbb, ifba (pins 11, 20): bias adjust pins for the if amplifiers. these pins allow independent adjustment of the internal if buffer currents for channels b and a, respectively. the typical dc voltage on these pins is 2.2v. if not used, these pins must be dc isolated from ground and v cc . v ccb and v cca (pins 12, 19): power supply pins for the lo buffers and bias circuits. these pins must be con - nected to a regulated 3.3v supply with bypass capacitors located close to the pins. typical current consumption is 98ma per pin. enb, ena (pins 14, 17): enable pins. these pins allow channels b and a, respectively, to be independently en - abled. an applied voltage of greater than 2.5v activates the associated channel while a voltage of less than 0.3v disables the channel. typical input current is less than 10a. these pins must not be allowed to float. lo (pin 16): single-ended local oscillator input. this pin is internally connected to the primary side of the lo input transformer and has a low dc resistance to ground. series dc-blocking capacitors should be used to avoid damage to the integrated transformer when dc voltage is present at the lo input. the lo input is internally matched to 50 for all states of ena and enb. i sel (pin 18): low power select pin. when this pin is pulled low (<0.3v), both mixer channels are biased at the normal current level for best rf performance. when greater than 2.5v is applied, both channels operate at reduced current, which provides reasonable performance at lower power consumption. this pin must not be allowed to float.
LTC5593 18 5593f block diagram 5593 bd bias bias gnd ena i sel lo v ccb ifbb v cca ifba ifb ? ifb + ifa ? ifa + ifgndb ifgnda gnd rfb lo amp lo amp enb gnd if amp 11 10 9 12 14 13 gnd 15 16 17 18 6 8 7 ctb 5 gnd 4 gnd 3 cta 2 rfa 1 if amp 22 21 20 19 23 24
LTC5593 19 5593f test circuit rf gnd gnd bias dc1710a evaluation board stack-up (nelco n4000-13) 0.015? 0.015? 0.062? 4:1 t1a ifa 50 c7a l2a l1a c5a r2a c6 c3a c4 LTC5593 1 19 20 21 22 23 24 12 11 10 9 8 7 lo 50 17 18 16 15 14 c2 5 6 13 4 3 rfa 50 v ccif 3.3v to 5v c1a rfb 50 c1b 2 ifgnda gnd ifa + ifa ? ifba lo gnd gnd i sel enb ena v cca ifgndb gnd ifb + ifb ? ifbb v ccb rfa cta gnd gnd ctb rfb 5593 f01 4:1 t1b ifb 50 c5b c3b c8a c8b c7b l1b l2b i sel (0v/3.3v) v cc 3.3v ena (0v/3.3v) enb (0v/3.3v) r2b 25 gnd l1, l2 vs if frequencies if (mhz) l1a, l1b, l2a, l2b (nh) 140 270 190 150 240 100 300 56 380 33 470 22 ref des value size vendor c1a, c1b, c3a, c3b c5a, c5b 22pf 0402 avx c2 1.5pf 0402 avx c8a, c8b 10pf 0402 avx c4, c6 1f 0603 avx c7a, c7b 1000pf 0402 avx l1a, l1b l2a, l2b 150nh 0603 coilcraft t1a, t1b (alternate) tc4-1w-7aln+ (wbc4-6tlb) mini-circuits (coilcraft) r2 vs rf and lo frequencies rf (mhz) lo r2a, r2b 2300 to 2700 low side 953 high side 3.01k 2700 to 4000 low side open high side open figure 1. standard test circuit schematic (190mhz if)
LTC5593 20 5593f introduction the LTC5593 consists of two identical mixer channels driven by a common lo input signal. each high linearity mixer consists of a passive double-balanced mixer core, if buffer amplifier, lo buffer amplifier and bias/enable circuits. see the pin functions and block diagram sections for a description of each pin. each of the mixers can be shutdown independently to reduce power consumption and low current mode can be selected that allows a trade-off between performance and power consumption. the rf and lo inputs are single-ended and are internally matched to 50. low side or high side lo injection can be used. the if outputs are differential. the evaluation circuit, shown in figure 1, utilizes bandpass if output matching and an if transformer to realize a 50 single-ended if output. the evaluation board layout is shown in figure 2. applications information figure 2. evaluation board layout rf inputs the rf inputs of channels a and b are identical. the rf input of channel a, shown in figure 3, is connected to the primary winding of an integrated transformer. a 50 match is realized when a series external capacitor, c1a, is con - nected to the rf input. c1a is also needed for dc blocking if the source has dc voltage present, since the primary side of the rf transformer is internally dc-grounded. the dc resistance of the primary is approximately 3.6. the secondary winding of the rf transformer is inter - nally connected to the channel a passive mixer core. the center-tap of the transformer secondary is connected to pin 2 (cta) to allow the connection of bypass capacitor, c8a. the value of c8a can be adjusted to improve the figure 3. channel a rf input schematic LTC5593 c1a c8a rfa cta rfa to channel a mixer 1 2 5593 f03
LTC5593 21 5593f figure 4. channel-to-channel isolation vs c8 values rf frequency (ghz) 2.2 30 channel isolation (db) 40 45 50 2.4 2.6 2.7 5593 f04 35 2.3 2.5 2.8 55 c8 open c8 = 2.2pf c8 = 10pf channel-to-channel isolation at specific rf operation frequency with minor impact to conversion gain, linearity and noise performance. the channel-to-channel isola - tion performance with different values of c8a is given in figure 4. when used, it should be located within 2mm of pin 2 for proper high frequency decoupling. the nominal dc voltage on the cta pin is 1.2v. applications information figure 6. lo input schematic the rf input impedance and input reflection coefficient, versus rf frequency, are listed in table 1. the reference plane for this data is pin 1 of the ic, with no external matching, and the lo is driven at 2.31ghz. table 1. rf input impedance and s11 (at pin1, no external matching, lo input driven at 2.31ghz) frequency (ghz) rf input impedance s11 mag angle 2.0 74.2 + j13.6 0.22 23.1 2.2 69.4 C j6.4 0.17 C15.2 2.4 45.2 C j3.0 0.06 C146.0 2.6 45.6 + j6.5 0.08 120.3 2.8 48.3 + j10.9 0.11 92.3 3.0 51.5 + j14.1 0.14 75.9 3.2 57.1 + j15.5 0.16 57.3 3.4 62.6 + j11.8 0.15 37.2 3.6 64.3 + j4.7 0.13 16.0 3.8 63.6 C j6.8 0.13 C23.2 4.0 50.8 C j10.7 0.11 C79.4 lo input the lo input, shown in figure 6, is connected to the pri - mary winding of an integrated transformer. a 50 imped - ance match from 2.1ghz to 3.4ghz is realized at the lo port by adding a 1.5pf external series capacitor, c2. this capacitor is also needed for dc blocking if the lo source has dc voltage present, since the primary side of the lo transformer is dc-grounded internally. the dc resistance of the primary is approximately 1.8. for lo frequency figure 5. rf port return loss rf frequency (ghz) 2.0 30 rf port return loss (db) 15 20 10 5 2.4 3.0 3.2 3.4 3.6 3.8 2.8 5593 f05 25 2.2 2.6 4.0 0 lo = 2.4ghz lo = 3ghz lo = 3.6ghz lo l4 to mixer b LTC5593 i sel 5593 f06 18 lo 16 17 ena enb c2 14 bias bias to mixer a for the rf inputs to be properly matched, the appropriate lo signal must be applied to the lo input. a broadband input match is realized with c1a = 22pf. the measured input return loss is shown in figure 5 for lo frequencies of 2.4ghz, 3.0ghz and 3.6ghz. these lo frequencies correspond to lower, middle and upper values in the lo range. as shown in figure 5, the rf input impedance is dependent on lo frequency, although a single value of c1a is adequate to cover the 2.3ghz to 4.0ghz rf band.
LTC5593 22 5593f figure 7. lo input return loss applications information from 3.4ghz to 3.8ghz, the lo port can be well matched by using c2 = 0.6pf and l4 = 10nh. the secondary of the transformer drives a pair of high speed limiting differential amplifiers for channels a and b. the LTC5593s lo amplifiers are optimized for the 2.1ghz to 4.2ghz lo frequency range; however, lo frequencies outside this frequency range may be used with degraded performance. the lo port is always 50 matched, even when one or both of the channels is disabled. this helps to reduce fre- quency pulling of the lo source when the mixer is switched between different operating states. figure 7 illustrates the lo port return loss for the different operating modes. the nominal lo input level is 0dbm, though the limiting amplifiers will deliver excellent performance over a 6dbm input power range. table 2 lists the lo input impedance and input reflection coefficient versus frequency. table 2. lo input impedance vs frequency (at pin 16, no external matching, ena = enb = high) frequency (ghz) input impedance s11 mag angle 2.0 33.8 + j22.8 0.32 110.3 2.2 34.8 + j22.2 0.31 109.7 2.4 34.5 + j21.8 0.31 110.9 2.6 32.5 + j22.8 0.34 111.9 2.8 30.7 + j25.9 0.38 108.8 3.0 29.6 + j30.1 0.43 103.4 3.2 29.3 + j34.8 0.47 97.1 3.4 29.3 + j38.7 0.50 92.1 3.6 30.7 + j43.1 0.52 86.0 3.8 33.0 + j46.9 0.52 80.5 4.0 36.1 + j49.8 0.52 75.6 lo frequency (ghz) 2.0 35 lo port return loss (db) 30 20 15 10 0 2.2 3.0 3.4 5593 f07 25 5 2.8 3.8 4.0 2.4 2.6 3.2 3.6 both channels on one channel on both channels off c2 = 1.5pf l4 = open c2 = 0.6pf l4 = 10nh if outputs the if amplifiers in channels a and b are identical. the if amplifier for channel a, shown in figure 8, has differen - tial open collector outputs (ifa + and ifa C ), a dc ground return pin (ifgnda), and a pin for adjusting the internal bias (ifba). the if outputs must be biased at the sup- ply voltage (v ccifa ), which is applied through matching inductors l1a and l2a. alternatively, the if outputs can be biased through the center tap of a transformer (t1a). the common node of l1a and l2a can be connected to the center tap of the transformer. each if output pin draws approximately 50ma of dc supply current (100ma total). an external load resistor, r2a, can be used to improve impedance matching if desired. ifgnda (pin 23) must be grounded or the amplifier will not draw dc current. inductor l3a may improve lo-if and rf-if leakage performance in some applications, but is otherwise not necessary. inductors should have small resistance for dc. high dc resistance in l3a will reduce the if amplifier supply current, which will degrade rf performance.
LTC5593 23 5593f figure 8. if amplifier schematic with bandpass match 4:1 t1a ifa c7a l2a l1a c5a r2a l3a (or short) v ccifa 20 21 22 23 if amp bias 100ma 4ma ifba v cca LTC5593 ignda ifa ? ifa + r1a (option to reduce dc power) 5593 f08 figure 9. if output small-signal model 22 21 ifa + if a ? 0.9nh 0.9nh r if c if LTC5593 5593 f09 applications information for optimum single-ended performance, the differential if output must be combined through an external if transformer or a discrete if balun circuit. the evaluation board (see figures 1 and 2) uses a 4:1 if transformer for impedance transformation and differential to single-ended conversion. it is also possible to eliminate the if transformer and drive differential filters or amplifiers directly. the if output impedance can be modeled as 260 in parallel with 2.3pf. the equivalent small-signal model, including bondwire inductance, is shown in figure 9. frequency-dependent differential if output impedance is listed in table 3. this data is referenced to the package pins (with no external components) and includes the ef- fects of ic and package parasitics. bandpass if matching the bandpass if matching configuration, shown in figures?1 and 8, is best suited for if frequencies in the 90mhz to 600mhz range. resistor r2a may be used to reduce the if output resistance for greater bandwidth and inductors l1a and l2a resonate with the internal if output capacitance at the desired if frequency. the value of l1a, l2a can be estimated as follows: l1a = l2a = 1 2 f if ( ) 2 ? 2 ? c if ? ? ? ? where c if is the internal if capacitance (listed in table 3).
LTC5593 24 5593f figure 12. if output with lowpass matching applications information table 3. if output impedance vs frequency frequency (mhz) differential output impedance (r if || x if (c if )) 90 291 || Cj714 (2.5pf) 140 282 || Cj463 (2.5pf) 190 274 || Cj353 (2.4pf) 240 265 || Cj278 (2.4pf) 300 252 || Cj225 (2.4pf) 380 231 || Cj177 (2.4pf) 500 227 || Cj127 (2.5pf) values of l1a and l2a are tabulated in figure 1 for vari - ous if frequencies. the measured if output return loss for bandpass if matching is plotted in figure 10. performances of 470mhz if output frequency with low side lo injection using bandpass if matching is shown in figure 11. the test circuit schematic and components values are shown in figure 1 with r2 open in this example. the test conditions are: v cc = 3.3v, v ccif = 3.3v, ena = enb = high, i sel = low, t c = 25c. lowpass if matching for if frequencies below 90mhz, the inductance values become unreasonably high and the lowpass topology shown in figure 12 is preferred. this topology also can provide improved rf to if and lo to if isolation. v ccifa is supplied through the center tap of the 4:1 transformer. a lowpass impedance transformation is realized by shunt 4:1 t1a ifa 50 v ccifa 3.1 to 5.3v c5a 21 22 ifa ? ifa + c6 c9a r2a l1a l2a LTC5593 5593 f12 figure 11. performances of 470mhz if using bandpass matching rf frequency (mhz) 2.2 g c (db), iip3 (dbm) channel isolation (db) 17 23 25 3.8 5593 f11 15 13 5 2.6 3.0 3.4 2.4 2.8 3.2 3.6 9 29 iip3 27 21 19 11 7 44 50 52 42 40 32 36 56 54 48 46 38 34 c8 = open c8 = 10pf g c channel isolation figure 10. if output return loss with bandpass matching if frequency (mhz) 100 if port return loss (db) 150 250 300 350 400 450 500 550 600 5593 f10 200 5 10 15 20 25 30 l1, l2 150nh l1, l2 56nh l1, l2 33nh l1, l2 22nh
LTC5593 25 5593f figure 13. if output return loss with lowpass matching if frequency (mhz) if port return loss (db) 90 170 210 250 5591 f13 130 50 0 5 10 15 20 25 30 l1, l2 47nh l1, l2 150nh l1, l2 82nh applications information elements r2a and c9a (in parallel with the internal rif and cif), and series inductors l1a and l2a. resistor r2a is used to reduce the if output resistance for greater band - width, or it can be deleted for the highest conversion gain. the final impedance transformation to 50 is realized by transformer t1a. the measured if output return loss for lowpass if matching with r2a and c9a open is plotted in figure 13. the LTC5593 demo board (see figure 2) has been laid out to accommodate this matching topology with only minor modifications. v ccif values of 3.3v and 5v. for the highest conversion gain, high-q wire-wound chip inductors are recommended for l1a and l2a, especially when using v ccif = 3.3v. low cost multilayer chip inductors may be substituted, with a slight reduction in conversion gain. table 4. performance comparison with v ccif = 3.3v and 5v (rf = 2500mhz, low side lo, if = 190mhz, ena = enb = high) v ccif (v) r2a () i ccif (ma) g c (db) p1db (dbm) iip3 (dbm) nf (db) 3.3 953 200 8.5 10.4 27.7 9.5 open 200 9.6 9.6 27.2 9.5 5 953 207 8.4 13.7 28.5 9.7 open 207 9.5 13.3 27.4 9.7 the ifba pin (pin 20) is available for reducing the dc current consumption of the if amplifier, at the expense of iip3. the nominal dc voltage at pin 20 is 2.1v, and this pin should be left open-circuited for optimum performance. the internal bias circuit produces a 4ma reference for the if amplifier, which causes the amplifier to draw approxi - mately 100ma. if resistor r1a is connected to pin 20 as shown in figure 8, a portion of the reference current can be shunted to ground, resulting in reduced if amplifier current. for example, r1a = 470 will shunt away 1.4ma from pin 20 and the if amplifier current will be reduced by 35% to approximately 65ma. table 5 summarizes rf performance versus total if amplifier current when both channels are enabled. table 5. mixer performance with reduced if amplifier current rf = 2500mhz , low side lo, if = 190mhz, v cc = v ccif = 3.3v r1a, r1b i ccif (ma) g c (db) iip3 (dbm) p1db (dbm) nf (db) open 200 8.5 27.7 10.4 9.5 3.3k 176 8.4 26.7 10.5 9.5 1.0k 151 8.1 24.9 10.5 9.4 470 130 8.0 23.5 10.4 9.3 if amplifier bias the if amplifier delivers excellent performance with v ccif = 3.3v, which allows a single supply to be used for v cc and v ccif . at v ccif = 3.3v, the rf input p1db of the mixer is limited by the output voltage swing. for higher p1db, in this case, resistor r2a (figure 1) can be used to reduce the output impedance and thus the voltage swing, thus improving p1db. the trade-off for improved p1db will be lower conversion gain. with v ccif increased to 5v the p1db increases by over 3db, at the expense of higher power consumption. mixer p1db performance at 2500mhz is tabulated in table 4 for
LTC5593 26 5593f low power mode both mixer channels can be set to low power mode using the i sel pin. this allows flexibility to choose a reduced current mode of operation when lower rf performance is acceptable. figure 14 shows a simplified schematic of the i sel pin interface. when i sel is set low (<0.3v), both channels operate at nominal dc current. when i sel is set high (>2.5v), the dc currents in both channels are reduced, thus reducing power consumption. the performance in low power mode and normal power mode are compared in table 6. table 6. performance comparison between different power mode rf = 2500mhz, low side lo, if = 190mhz, ena = enb = high i sel i total (ma) g c (db) iip3 (dbm) p1db (dbm) nf (db) low 396 8.5 27.7 10.4 9.5 high 247 7.8 21.6 10.0 9.2 enable interface figure 15 shows a simplified schematic of the ena pin interface (enb is identical). to enable channel a, the ena voltage must be greater than 2.5v. if the enable function is not required, the enable pin can be connected directly to v cc . the voltage at the enable pin should never exceed the power supply voltage (v cc ) by more than 0.3v. if this should occur, the supply current could be sourced through the esd diode, potentially damaging the ic. the enable pins must be pulled high or low. if left float - ing, the on/off state of the ic will be indeterminate. if a three-state condition can exist at the enable pins, then a pull-up or pull-down resistor must be used. supply voltage ramping fast ramping of the supply voltage can cause a current glitch in the internal esd protection circuits. depending on the supply inductance, this could result in a supply volt - age transient that exceeds the maximum rating. a supply voltage ramp time of greater than 1ms is recommended. spurious output levels mixer spurious output levels versus harmonics of the rf and lo are tabulated in table 7. the spur levels were measured on a standard evaluation board using the test circuit shown in figure 1. the spur frequencies can be calculated using the following equation: f spur = (m ? f rf ) C (n ? f lo ) table 7. if output spur levels (dbc) rf = 2500mhz, f rf = C3dbm, f lo = 0dbm, f if 190mhz, low side lo, v cc = 3.3v, v ccif = 3.3v, ena = enb = high, i sel = low, t c = 25c n m 0 1 2 3 4 5 6 7 8 0 C40 C48 C60 C51 C83 C62 C74 * 1 C48 C0 C75 C62 C69 C69 * * * 2 C74 C78 C61 C85 C82 C87 C89 * * 3 * * * C65 * * * * * 4 * * * * * * * * * 5 * * * * * * * * 6 * * * * * * * *less than C90dbc figure 15. ena interface schematic figure 14. i sel interface schematic LTC5593 18 i sel v ccb 500 v cca 5593 f14 19 bias a bias b LTC5593 17 ena 500 v cca 5593 f15 19 clamp applications information
LTC5593 27 5593f information furnished by linear technology corporation is believed to be accurate and reliable. however, no responsibility is assumed for its use. linear technology corporation makes no representa - tion that the interconnection of its circuits as described herein will not infringe on existing patent rights. uh package 24-lead plastic qfn (5mm 5mm) (reference ltc dwg # 05-08-1747 rev a) 5.00 0.10 5.00 0.10 note: 1. drawing is not a jedec package outline 2. drawing not to scale 3. all dimensions are in millimeters 4. dimensions of exposed pad on bottom of package do not include mold flash. mold flash, if present, shall not exceed 0.20mm on any side 5. exposed pad shall be solder plated 6. shaded area is only a reference for pin 1 location on the top and bottom of package pin 1 top mark (note 6) 0.55 0.10 23 1 2 24 bottom view?exposed pad 3.25 ref 3.20 0.10 3.20 0.10 0.75 0.05 r = 0.150 typ 0.30 0.05 (uh24) qfn 0708 rev a 0.65 bsc 0.200 ref 0.00 ? 0.05 0.75 0.05 3.25 ref 3.90 0.05 5.40 0.05 0.30 0.05 package outline 0.65 bsc recommended solder pad layout apply solder mask to areas that are not soldered pin 1 notch r = 0.30 typ or 0.35 45 chamfer r = 0.05 typ 3.20 0.05 3.20 0.05 uh package 24-lead plastic qfn (5mm 5mm) (reference ltc dwg # 05-08-1747 rev a) package description please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.
LTC5593 28 5593f linear technology corporation 1630 mccarthy blvd., milpitas, ca 95035-7417 (408) 432-1900 fax : (408) 434-0507 www.linear.com linear technology corporation 2011 lt 1011 ? printed in usa related parts typical application part number description comments infrastructure ltc5569 300mhz to 4ghz dual active downconverting mixer 2db gain, 26.7dbm iip3 and 11.7db nf at 1950mhz, 3.3v/180ma supply lt5527 400mhz to 3.7ghz, 5v downconverting mixer 2.3db gain, 23.5dbm iip3 and 12.5db nf at 1900mhz, 5v/78ma supply lt5557 400mhz to 3.8ghz, 3.3v downconverting mixer 2.9db gain, 24.7dbm iip3 and 11.7db nf at 1950mhz, 3.3v/82ma supply ltc6416 2ghz 16-bit adc buffer 40dbm oip3 to 300mhz, programmable fast recovery output clamping ltc6412 31db linear analog vga 35dbm oip3 at 240mhz, continuous gain range C14db to 17db ltc554x 600mhz to 4ghz downconverting mixer family 8db gain, >25dbm iip3, 10db nf, 3.3v/200ma supply lt5554 ultralow distort if digital vga 48dbm oip3 at 200mhz, 2db to 18db gain range, 0.125db gain steps lt5578 400mhz to 2.7ghz upconverting mixer 27dbm oip3 at 900mhz, 24.2dbm at 1.95ghz, integrated rf transformer lt5579 1.5ghz to 3.8ghz upconverting mixer 27.3dbm oip3 at 2.14ghz, nf = 9.9db, 3.3v supply, single-ended lo and rf ports ltc5590 dual 600mhz to 1.7ghz downconverting mixer 8.7db gain, 26dbm iip3, 9.7db noise figure ltc5591 dual 1.3ghz to 2.3ghz downconverting mixer 8.5db gain, 26.2dbm iip3, 9.9db noise figure ltc5592 dual 1.6ghz to 2.7ghz downconverting mixer 8.3db gain, 27.3dbm iip3, 9.8db noise figure rf power detectors lt5534 50mhz to 3ghz log detector 1db over temperature, 38ns response time, 60db dynamic range lt5581 6ghz low power rms detector 40db dynamic range, 1db accuracy over temperature, 1.5ma supply current ltc5583 dual 6ghz rms detector up to 60db dynamic range, >50db isolation, difference output for vswr measurement adcs ltc2285 14-bit, 125msps dual adc 72.4db snr, >88db sfdr, 790mw power consumption ltc2185 16-bit, 125msps dual adc ultralow power 76.8db snr, 185mw/channel power consumption ltc2242-12 12-bit, 250msps adc 65.4db snr, 78db sfdr, 740mw power consumption extended frequency range 3.7ghz to 4.5ghz, low side lo, v cc = 3.3v, v ccif = 3.3v, ena = high, enb = i sel = low, t c = 25c, p lo = 0dbm, p rf = C3dbm (C3dbm/tone for 2-tone iip3 tests, ?f = 2mhz), if = 305mhz conversion gain, iip3 and ssb nf vs rf frequency ifa 50 4:1 tc4-1w-7aln+ 56nh 1000pf 22pf 1f 22pf 1f 0.5pf 2.2nh LTC5593 channel a channel b not shown 1 19 20 21 22 23 24 lo 50 17 18 16 15 4 3 rfa 50 v ccif 3.3v v cc 3.3v to channel b to channel b 2.2pf 2 ifgnda gnd ifa + ifa ? ifba lo gnd i sel ena v cca rfa cta gnd gnd 5593 ta02a 56nh i sel ena 1.1pf 3.3nh rf frequency (mhz) 3.7 g c (db), ssb nf (db), iip3 (dbm) 20 26 24 22 28 4.4 5593 ta02b 16 18 12 10 8 6 14 4 3.8 4.0 4.2 4.3 3.9 4.1 4.64.5 4.7 iip3 nf g c


▲Up To Search▲   

 
Price & Availability of LTC5593

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X